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Abstract: The presence of non-normality and EWMA model have a significant
effect on the control limits of X-control chart. The effect of non-normality under
EWMA model on the charts, we conclude that non-normality is usually not a
problem for subgroup sizes of four or more but there is substantial effect of
EWMA constant on upper and lower control limits.
Keywords: Upper and lower control limits, control charts, EWMA model, non-
normality.

INTRODUCTION

Probably no statistical method is as characteristics of quality control and
industrial statistics as the control chart. Its uses are many and varies,
including for example: studies of process capability (Clifford (1971)),
measurement capability studies (Wernimant (1951)), presentation of the
results of designed experiments (Ott (1967)), and acceptance sampling for
process parameters (Freund (1957)), as well as in the traditional sense of
process control (Knowler (1946)). In many applications the chart is applied
without knowledge of the shape of the underlying distribution of
individuals. Indeed, it is often stated that the distribution of a process is
used to establish control prior to determining the distribution of the
underlying process. When an X

–
-control chart having 3� limits is employed

with a process which is normally distributed the type-I risk (i.e., risk of a
point falling outside the limits when the process is in control) associated
with these control limits is 0.003. For other underlying distributions, however
this may not be the case of particular interest, therefore, in application of
control charts as well as in most practical applications of the central limit
theorem is the rate at which the distribution of sample means approaches
the normal distribution. Shewhart (1931) has shown empirically through
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the use of Shewhart's bowl that the standard control chart limits are
approximately correct for the right triangular and rectangular distributions.
Also, a set of tables of 3? control limit factors for non-normal distributions
has been presented by Burr (1967). From his study of the effect of non-
normality on these factors, he concludes that, "----we can use the ordinary
normal curve control chart constants unless the population is markedly non-
normal. When it is, the tables provide guidance on what constant to use
"(Burr (1967)). Burr's value were derived for various members of the Burr
family of distribution from the expected values of the range for those
distributions. They provide an approximation to the limits for other non-
normal distributions based on the associated coefficients of skewness and
kurtosis. The exact probability of exceeding these control limits when the
process is in control, however, remains unknown. Shewhart (1931)
emphasizes that most distributions exhibiting control have been found to
be in close neighborhood of normality to be fitted by the first two terms of
the Gram-Charlier series. But it seems reasonable and also necessary
sometimes to consider a better form with terms including upto that in �1 of
the Edgeworth series.

The control limits for X
–

-chart and �-chart calculated on the basis of
normal population may be seriously affected particularly in cases of
variations showing significant departures of �1 and �2 from their respective
normal theory values (Delaporte (1951)) recommends utilization of such
estimates in the formulae for the �-coefficients of the sample characteristics
concerned in order to choose a suitable Person curve to represent its
frequency distribution. Working with the standardize variable x = {X-E(x)}/
�X, in a significantly non-normal situation, one can thus obtain a satisfactory
Pearson curve for the distribution of x

_
 and calculate upper and lower limits

for conventional probability levels. The preparation of tables of values of
mean x

_
, for a number of probability levels and for suitable ranges of values

of �1 and �2 is worthwhile, as Delaporte suggests, but the test seems to be
formidable by his method of approach. The tables of the probability integrals
of the Pearson curves, which will be required for the purpose, are available
only for a few of the curves in a form one gets in the case of the normal
probability function. Although formulae are there for calculating the desired
fractal for all other cases, they do not appear to help much in the preparation
of the proposed table.

Pearson and Please (1975) used the results of extensive sampling
experiments on theoretical and empirical populations to prepare a series of
charts in which the robustness of the one and two-sample "student's t"
statistics, the sample variance, and the variance ration are displayed as
functions of the skewness and kurtosis of the populations. Andrews et. al.
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(1972), Huber (1972), Hampel (1974), and Hogg (1974) reviewed robust
estimation and compared many estimators of a location parameter with
respect to their robustness and efficiency. Stigler (1977) examined the
performance of some robust estimators of location when applied to some
historical data and concluded that the sample mean compares favorably
but the light "trimming" of the outer order statistics from the computation
of the mean greatly improves performances.

Gayen (1951) had considered the robustness of both the sample
correlation coefficient r and of Fisher's Z transformation of departures from
bivariate normality. When the population correlation coefficient � is zero
and, in particular, when the variables are independent, the distribution of r
is robust even for small sample sizes, however, for large values of �, the
departures from normality are appreciable. The Z-transformation under
non-normal parent population, remains asymptotically normal but the
approach to normality is somewhat tardy. The mean and the variance of Z
are unaffected by the bivariate parent population, but the effects of
departures from mesokurtosis may be considerable. Although the mean of
Z slowly approaches its normal value as n increases, its variance is sensitive
to the shape of the parent population even in large samples.

Subsequent studies dealing with the distributions of r and z (and various
other transformations of r) include: Harley (1956), Kowalski (1972), Gajjar
and Kocherlakota (1978), Kocherlakota and Gajjar (1980), Kocherlakota and
Kocherlakota (1985), Kocherlakota and Singh (1982) and Srivastava and Lee
(1984, 1985). From these studies, the results on robustness of various tests,
particularly the z-test for testing � = 0 collaborate the earlier findings and
can be summarized as follows: The z-test and various other tests based on
the classical sample correlation coefficient r, are robust to small departure
from normality. For more than moderate departures, however, he type-I
errors of these tests, including the z-test, are not at all robust and are in fact
considerably larger than their advertised values. Tiku (1986) has developed
a parametric test for H0: ��= 0 which has much better robustness properties
for situations more commonly encountered in practice.

Finally, we mention briefly the problem of testing normality. Sometimes,
it is common to test the observed moment ratio (b1)

1/2 and b2 against their
distributions, given the hypothesis of normality, and these are occasionally
referred to tests of normality. This is, however, a very loose description of
normality, and such tests are better called tests of skewness and kurtosis
respectively. Geary (1947b) developed and investigated an alternative test
of kurtosis based on the ratio of sample mean deviation to the standard
deviation. Gastwirth and Owens (1977) showed that Geary's test may be
superior to b2 in detecting symmetric departures from normality.
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Kac et al. (1955) discussed the distribution of Dn and w2 in testing
normality when the two parameters (µ, �2) are estimated from sample by
(X

_
 , S2). The limiting distributions of these statistics are parameter-free, but

are not obtained explicitly. Some sampling experiments are reported which
give empirical estimates of these probabilities. Lilliefors (1967) used extensive
sampling experiments to compute critical values of Kolmogorov-Smirnov
Dn statistic in testing normality. Shapiro and Wilk (1965) proposed a new
criterion, called W-test, for testing normality which is based on the regression
of the order statistics upon their expected values. They carried out extensive
sampling experiments to evaluate its distribution. Shapiro et al. (1968) and
Stephens (1974) made power comparisons of various tests for normality,
using extensive sampling experiments, and showed that W-test is usually
somewhat superior to other tests in their study. Shapiro and Francia (1972)
developed a simplified approximation of W-test for large samples, whose
consistency was established by Sarkadi (1975) (see, also Weisberg (1974))
Doksum et al. (1977) discussed plots and tests for assessing symmetry, some
of which compared favorably in power with the W-test. Moore (1971)
developed chi-square statistics with random cell boundaries for testing
normality when fully efficient maximum likelihood estimators are used to
determine boundaries with estimated equal probabilities in classes (see, also
Mardia (1980)).

The investigations on robustness, as summarized heretofore, have as
their aim the recognition of the range of validity of the standard normal
theory procedures. However, it is often difficult in practice to decide whether
the standard procedures are likely to be approximately valid or misleading.
One common approach to the non-fulfillment of normality assumption has
been to seek a transformation which will bring the observations to the normal
form, so that standard normal theory procedures may be applied to the
transformed data. The early investigation in this field were carried out by
Bartlett (1947). Hoyle (1973) gives an excellent review and a compendium
of references to earlier works.

Another alternative approach to non-normality is a radical one. Instead
of holding to standard normal theory methods, either because they are
robust and approximately valid in non-normal cases, or by transforming
the observations to make them approximately valid, they are entirely
abandoned and the problem is approached afresh. The intent is to find
statistical procedures which remain valid for a wide class of parent
distributions, say for all continuous distributions. If such procedures are
developed, they will necessarily be valid for normal distributions, and their
robustness will be precise and assured. Such procedures are called
distribution-free methods since they are not dependent on a given
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distribution (such as the normal), but will work for a wide range of different
distributions. They are also called non-parametric methods because their
null hypothesis is not concerned with specific parameters (such as the mean
or variance), but only with the distribution of the variates. In recent years,
distribution-free or non-parametric method have become quite popular
because they are readily computable and permit freedom from worry about
the classical assumptions of the standard normal theory. It should however,
be pointed out that in cases where classical assumptions hold entirely or
even approximately, the analogous standard normal procedures are
generally more efficiently for detecting departures from the null hypothesis.

In general, the process parameters µ and � must be estimated from
process data so that the control limits can be determined. Of course, with
more data, the control limits can be estimated more precisely. One risk of
using too few data points is that the control limits will be poorly estimated.
If � is underestimated, then the limits will be too narrow and there will be
too many false alarms. If � is overestimated then the limits will be too wide
and the chart will rarely signal even for moderate shifts. A second risk of
having n, the size of the preliminary sample, too small is that it will be
difficult to assess whether the process was in control when the data were
collected. If n is sufficiently small then it is impossible to have a point outside
the control limits on the retrospective X

_
-chart.

There are many industrial situations where it does not make sense to
periodically collect a sample containing more than one observation since
consecutive observations differ only due to measurement error. In these
situations, individual observations are periodically drawn from the process.
Individual observation control charts are often used to monitor chemical
processes where, for example, the measurement is temperature or
concentration. Also, these charts are used to monitor processes under
engineering feedback process control, an area of increased attention recently
(see, e.g., Box and Kramer (1992), and Montgomery et al. (1994)). Individual
observation control charts may be appropriate when automated inspection
and measurement technology is used and every unit is measured. They are
also appropriate when the production is rate low or the cost of measurement
is high. In such a situation one can apply the exponential weighted moving
average (EWMA) chart. The EWMA chart introduced by Roberts (1959),
may be more difficult to interpret than an X-chart but is more effective in
detecting small shifts in the process mean (see, Hunter (1986), Robinson
and Ho (1978), Crowder (1987a, 1987c, 1989), and Lucas and Saccucci (1990)).
Saccucci and Lucas (1990) give a computer program for computing the
average run length (ARL) associated with the EWMA and the combined X
and EWMA charts. Hunter (1986) points out that the EWMA chart for sample
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average can be nicely graphed simultaneously with the Shewhart chart to
enable easier interpretation.

EWMA charts have been developed to detect shifts in the process
variability. Ng and Case (1989) constructed several EWMA charts including
one where the sample statistic is the weighted average of moving ranges.
Wortham and Ringer (1971) and Sweet (1986) suggest using two EWMA
charts, one for detecting mean shifts and the other for detecting variance
shifts. Macgregor and Harris (1993) propose EWMA charts for controlling
variance that also could be used for individual observations. CUSUM charts
are another important alternative for individual observations. Lucas and
Saccucci (1990) compare the CUSUM and EWMA charts in monitoring the
process mean and conclude, "The properties of control schemes are so close
that we had to consider such things as the steady state distribution (of the
run length, as apposed to simply the mean) to differentiate between
them…We feel that other criteria, such as training costs could be used to
determine which control scheme is implemented".

Since the effectiveness of CUSUM and EWMA charts are so close, it is
clear that one can construct a combination procedure of CUSUM chart and
X chart that meets (or even slightly exceeds) the run length performance of
the X and EWMA chart. Following the advice in Lucas and Saccucci (1990)
we consider the EWMA chart in this study since the EWMA chart is
somewhat familiar in our application area. The EWMA is a useful monitoring
tool that has the following main properties:

(i) It allows us to monitor µ and � on one chart.
(ii) Increases and /or decreases in either of the process parameters can

be directly identified.
(iii) It is useful graphical diagnostic tool.
(iv) It has good ARL properties for simultaneous changes in the process

mean and standard deviation and for large increases in �. (when
there are decreases in the variance with respect to the mean it is
not as efficient as simultaneously using the X and EWMA charts)

(v) It allows the placement of specification limits on the chart.
(vi) It may be viewed as smoothed tolerance limits.
(vii)In situations where it is possible to rank order the observations

before measurements are actually taken, the EWMA chart requires
only two measurements.

The aim of the present paper is to study the problem of setting up control
limits for means in cases of non-normal variation and EWMA model. The
non-normal distribution has been represented by the first four terms of an
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Edgeworth series. The values of standardized cumulant �3 = 1 ,� and �4 =

�2 – 3 considered are within Barton and Dennis (1952) limits, which means
that for such values the population is positive definite and unimodal. For
various non-normal populations and different values of � under EWMA
model, the values of upper and lower control limits are tabulated and
compared with those of the normal population.

3.2. Modeling and Monitoring EWMA Control Chart

The EWMA control chart is based on the exponentially weighted moving
average which is defined as

wt = �xt + (1 – �)wt–1 (3.2.1)
where xt is the observation at time t, � is a smoothing constant (0 < � � 1),
and the starting value, w0 is set equal to the in-control process mean. The
EWMA control chart signals if the EWMA statistic, wt, falls outside the
control limits. The sequence of wt is called EWMA

wt = �xt + (1 – �) [�xt-1 + (1 – �) wt-2)] (3.2.2)

= �xt + �(1 – �) xt-1) + (1 – �)2 wt-2

= �xt + �(1 – �)xt-1 + (1 – �)2 [�xt–2 + (1 – �) wt–3]

= �xt + �(1 – �) xt–1 + �(1 – �)2 xt–2 + (1 – �)3 wt–3

---

---

---

= �wt + �(1–�)xt-1 + �(1–�)2 xt-2 + ... + �(1 – �)t–1 x1 + (1 – �)t µ,
where w0 = µ. Here we compute the mean and variance of wt.
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3.3. The effect of Non-Normality and EWMA model on control limits for
means

We consider the frequency function for the quality characteristics to be
represented by the Edgeworth form of Type A series then the probability
integral for it has been given by Cornish and Fisher in terms of the normal
probability levels. Let � denote the variable for the quality characteristic in
standardized form i.e., having zero mean and unit standard deviation and
x the standard normal variate. The p percent probability levels of the
standard normal variable x = (wt – µ)/� by the expression
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 of the distribution of a statistic we should find out the first few
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�-coefficients of the statistic for the determinations of the probability integral
in terms of the normal deviate x by the equation (3.3.1). In the case of control
chart for average � we should therefore, obtain the standardized cumulants
of � and substitute them in the above expressions to obtain the necessary
control limits.

When the basic variable � follows the Edgeworth series the mean �'
also follows the same law but with different values for standardized
cumulants whose expressions are already known. If we consider the
moderately non-normal populations, terms upto that in �1 will provide good
approximation. This is particularly so for the distribution of mean even in
cases where the basic populations may need more terms of the Edgeworth
series for a satisfactory representation. Owing to the fact that standardized
cumulants of the distributions of the mean are of order n–i, where n is the

size of the sample and 
1 3

, 1, , ....
2 2

i �  When we stick to the first four moments

and EWMA model, we obtain the simpler expression, by neglecting powers

of 2
4 3, ,� � and terms of order higher than those in �4 and �3

2 such as:
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In fact, �1 and �2 for the basic variable may even be considerably large,
for those of the statistic (here, mean) is less in magnitude. We know for the
mean
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in which �1 and �2 is given by
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where x
_

 = ± 2.576 D.

3.4. Numerical Illustration and Discussion of the Results.

For various non-normal population with various non-normality parameters
(�3, �4) and EWMA constant �, the values of upper and lower control limits
are given in Table 3.1 to Table 3.5. If ��=1 we get the tabulated values of
Gayen (1957) which is shown in Table (3.5). The effect of non-normality
under EWMA model on the charts and we conclude that non-normality is
usually not a problem for subgroup sizes of four or more but there is
substantial effect of EWMA constant on upper and lower control limits.
From Table 3.1 to Table 3.5 it is evident that upper control limits for � = 0.2,
0.4, 0.6, 0.8, 1.0 and (�3, �4) = (-0.60, -0.50) are 1.5886, 1.3869, 1.3906, 1.4690,
1.6042, respectively, whereas lower control limit for above constants are -
1.4169, - 1.6504, - 1.9538, -2.3076 and -2.7314 respectively. By comparing
entries of Table 3.5 for =1 with Table 3.1 to Table 3.4 when ��= 0.2, 0.4, 0.6
and 0.8 one can easily see that the effect of EWMA model is quite series on
the lower and upper control limits. Thus, we see that either the values of
the upper limits or lower limits will serve the purpose. Just to avoid negative
signs it is advisable to tabulate values of upper limits, since lower limits

Table 3.1: Upper and Lower Control Limits for Non-Normal Population
Under EWMA Model (  =0.2)

�3 � 0.1 0.4 0.7 1 -1 -0.6 -0.3 0
�4 �

-0.5 -1.2439 -1.3969 -1.6861 -2.1116 -1.8488 -1.4169 -1.2519 -1.2232
1.2317 1.3058 1.5162 1.8629 2.1257 1.5886 1.3448 1.2233

-0.35 -1.1345 -1.2875 -1.5767 -2.0023 -1.7394 -1.3075 -1.1425 -1.1138
1.1181 1.1922 1.4026 1.7493 2.0121 1.4751 1.2312 1.1139

-0.15 -0.9887 -1.1417 -1.4309 -1.8564 -1.5936 -1.1617 -0.9967 -0.9680
0.9667 1.0408 1.2512 1.5979 1.8607 1.3236 1.0798 0.9681

0 -0.8793 -1.0323 -1.3215 -1.7471 -1.4842 -1.0523 -0.8873 -0.8586
0.8531 0.9273 1.1377 1.4843 1.7472 1.2101 0.9663 0.8587

0.05 -0.8429 -0.9958 -1.2851 -1.7106 -1.4478 -1.0158 -0.8509 -0.8221
0.8153 0.8894 1.0998 1.4465 1.7093 1.1722 0.9284 0.8222

0.35 -0.6241 -0.7771 -1.0663 -1.4919 -1.2290 -0.7971 -0.6321 -0.6034
0.5882 0.6623 0.8727 1.2194 1.4822 0.9451 0.7013 0.6035

0.5 -0.5147 -0.6677 -0.9570 -1.3825 -1.1197 -0.6877 -0.5227 -0.4940
0.4746 0.5487 0.7591 1.1058 1.3686 0.8316 0.5877 0.4941

0.9 -0.2231 -0.3761 -0.6653 -1.0908 -0.8280 -0.3961 -0.2311 -0.2024
0.1718 0.2459 0.4563 0.8030 1.0658 0.5287 0.2849 0.2025
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Table 3.2: Upper and Lower Control Limits for Non-Normal Population
Under EWMA Model ( = 0.4)

�3 � 0.1 0.4 0.7 1 -1 -0.6 -0.3 0
�4 �

-0.5 -1.4124 -1.3827 -1.3963 -1.4532 -1.8924 -1.6504 -1.5196 -1.4320
1.4564 1.5584 1.7037 1.8924 1.4532 1.3869 1.3878 1.4320

-0.35 -1.3692 -1.3395 -1.3531 -1.4100 -1.8492 -1.6072 -1.4764 -1.3888
1.4132 1.5152 1.6605 1.8492 1.4100 1.3437 1.3446 1.3888

-0.15 -1.3116 -1.2819 -1.2955 -1.3524 -1.7916 -1.5496 -1.4188 -1.3312
1.3556 1.4576 1.6029 1.7916 1.3524 1.2861 1.2870 1.3312

0 -1.2684 -1.2387 -1.2523 -1.3092 -1.7484 -1.5064 -1.3756 -1.2880
1.3124 1.4144 1.5597 1.7484 1.3092 1.2429 1.2438 1.2880

0.05 -1.2540 -1.2243 -1.2379 -1.2948 -1.7340 -1.4920 -1.3612 -1.2736
1.2980 1.4000 1.5453 1.7340 1.2948 1.2285 1.2294 1.2736

0.35 -1.1676 -1.1379 -1.1515 -1.2084 -1.6476 -1.4056 -1.2748 -1.1872
1.2116 1.3136 1.4589 1.6476 1.2084 1.1421 1.1430 1.1872

0.5 -1.1244 -1.0947 -1.1083 -1.1652 -1.6044 -1.3624 -1.2316 -1.1440
1.1684 1.2704 1.4157 1.6044 1.1652 1.0989 1.0998 1.1440

0.9 -1.0092 -0.9795 -0.9931 -1.0500 -1.4892 -1.2472 -1.1164 -1.0288
1.0532 1.1552 1.3005 1.4892 1.0500 0.9837 0.9846 1.0288

Table 3.3: Upper and Lower Control Limits for Non-Normal Population
Under EWMA Model ( =0.6)

�3 � 0.1 0.4 0.7 1 -1 -0.6 -0.3 0
�4 �

-0.5 -1.6515 -1.4995 -1.3339 -1.1547 -2.0935 -1.9538 -1.8333 -1.6992
1.7454 1.8750 1.9910 2.0935 1.1547 1.3906 1.5517 1.6992

-0.35 -1.6477 -1.4956 -1.3300 -1.1509 -2.0896 -1.9500 -1.8294 -1.6954
1.7416 1.8711 1.9871 2.0896 1.1509 1.3867 1.5478 1.6954

-0.15 -1.6426 -1.4905 -1.3249 -1.1458 -2.0845 -1.9448 -1.8243 -1.6902
1.7364 1.8660 1.9820 2.0845 1.1458 1.3816 1.5427 1.6902

0 -1.6387 -1.4866 -1.3210 -1.1419 -2.0807 -1.9410 -1.8205 -1.6864
1.7326 1.8621 1.9782 2.0807 1.1419 1.3777 1.5388 1.6864

0.05 -1.6374 -1.4853 -1.3197 -1.1406 -2.0794 -1.9397 -1.8192 -1.6851
1.7313 1.8608 1.9769 2.0794 1.1406 1.3764 1.5375 1.6851

0.35 -1.6297 -1.4776 -1.3120 -1.1329 -2.0717 -1.9320 -1.8115 -1.6774
1.7236 1.8531 1.9692 2.0717 1.1329 1.3687 1.5298 1.6774

0.5 -1.6259 -1.4738 -1.3082 -1.1291 -2.0678 -1.9281 -1.8076 -1.6736
1.7198 1.8493 1.9653 2.0678 1.1291 1.3649 1.5260 1.6736

0.9 -1.6156 -1.4635 -1.2979 -1.1188 -2.0576 -1.9179 -1.7974 -1.6633
1.7095 1.8390 1.9551 2.0576 1.1188 1.3546 1.5157 1.6633
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Table 3.4: Upper and Lower Control Limits for Non-Normal Population
Under EWMA Model ( =0.8)

�3 � 0.1 0.4 0.7 1 -1 -0.6 -0.3 0
�4 �

-0.5 -1.9364 -1.6762 -1.3553 -0.9737 -2.3713 -2.3076 -2.1890 -2.0097
2.0762 2.2353 2.3337 2.3713 0.9737 1.4690 1.7697 2.0097

-0.35 -1.9645 -1.7043 -1.3834 -1.0017 -2.3994 -2.3357 -2.2171 -2.0378
2.1043 2.2634 2.3617 2.3994 1.0017 1.4971 1.7978 2.0378

-0.15 -2.0020 -1.7417 -1.4208 -1.0392 -2.4369 -2.3731 -2.2545 -2.0752
2.1417 2.3008 2.3992 2.4369 1.0392 1.5345 1.8352 2.0752

0 -2.0300 -1.7698 -1.4489 -1.0673 -2.4649 -2.4012 -2.2826 -2.1033
2.1698 2.3289 2.4273 2.4649 1.0673 1.5626 1.8633 2.1033

0.05 -2.0394 -1.7792 -1.4582 -1.0766 -2.4743 -2.4106 -2.2920 -2.1127
2.1792 2.3382 2.4366 2.4743 1.0766 1.5720 1.8727 2.1127

0.5 -2.1236 -1.8634 -1.5425 -1.1609 -2.5305 -2.4667 -2.3481 -2.1688
2.2634 2.4225 2.5209 2.5585 1.1328 1.6281 1.9288 2.1688

0.35 -2.0956 -1.8353 -1.5144 -1.1328 -2.5585 -2.4948 -2.3762 -2.1969
2.2353 2.3944 2.4928 2.5305 1.1609 1.6562 1.9569 2.1969

0.9 -2.1985 -1.9383 -1.6174 -1.2357 -2.6334 -2.5697 -2.4511 -2.2718
2.3383 2.4974 2.5957 2.6334 1.2357 1.7311 2.0318 2.2718

Table 3.5: Upper and Lower Control Limits for Non-Normal Population
Under EWMA Model ( =1)

�3 � 0.1 0.4 0.7 1 -1 -0.6 -0.3 0
�4 �

-0.5 -2.2811 -1.9105 -1.4334 -0.8497 -2.7283 -2.7314 -2.6094 -2.3809
2.4689 2.6619 2.7484 2.7283 0.8497 1.6042 2.0458 2.3809

-0.35 -2.3396 -1.9690 -1.4919 -0.9082 -2.7868 -2.7899 -2.6679 -2.4394
2.5274 2.7204 2.8069 2.7868 0.9082 1.6628 2.1044 2.4394

-0.15 -2.4176 -2.0470 -1.5699 -0.9863 -2.8649 -2.8680 -2.7460 -2.5175
2.6055 2.7985 2.8849 2.8649 0.9863 1.7408 2.1824 2.5175

0 -2.4762 -2.1056 -1.6285 -1.0448 -2.9234 -2.9265 -2.8045 -2.5760
2.6640 2.8570 2.9435 2.9234 1.0448 1.7993 2.2409 2.5760

0.05 -2.4957 -2.1251 -1.6480 -1.0643 -2.9429 -2.9460 -2.8240 -2.5955
2.6835 2.8765 2.9630 2.9429 1.0643 1.8188 2.2604 2.5955

0.35 -2.6127 -2.2421 -1.7650 -1.1814 -3.0600 -3.0631 -2.9411 -2.7126
2.8006 2.9936 3.0800 3.0600 1.1814 1.9359 2.3775 2.7126

0.5 -2.6713 -2.3007 -1.8236 -1.2399 -3.1185 -3.1216 -2.9996 -2.7711
2.8591 3.0521 3.1386 3.1185 1.2399 1.9944 2.4360 2.7711

0.9 -2.8273 -2.4568 -1.9796 -1.3960 -3.2746 -3.2777 -3.1557 -2.9272
3.0152 3.2082 3.2947 3.2746 1.3960 2.1505 2.5921 2.9272



Upper and Lower Control Limits for Means in Cases of Non­normal Variation... 165

have always negative values. An unstable process can lead to a seemingly
non-normal distribution and EWMA model. If for example, the process
shifted upward after two-thirds of the data were collected, then there would
be skewed to the right. In such cases, a data transformation would be
inappropriate. It is thus important that the data be taken from a stable
process. When the process is believed to be stable, check for non-normality
and EWMA model by looking at a histogram and a normality probability
curve. What is important to note here is, that the presence of non-normality
and EWMA model have a significant effect on the control limits of X-control
chart.
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